78 GHz – 100 GHz High - Power Amplifier

Features

- Wideband operation: 78 GHz – 100 GHz
- Pout = 17 dBm (typ, Pin = 5 dBm)
- P(-1dB) = 11 dBm (typ)
- Linear Gain: 14 – 23 dB
- Linear Gain Control Range: 10 dB
- WR-10 Waveguide Interface

General Description

CI0402 is a high-power amplifier operated from 78 GHz to 100 GHz frequency range with output power up to 50 mW (typ). The MMIC is fabricated using a 0.1-µm InP HEMT process. CI0402 has WR-10 waveguide interface for the input and output.

Applications

- Astronomy
- Millimeter-wave spectrum measurement
- Millimeter-wave imaging system
- Other test equipment

Functional Diagram
Connection Table

<table>
<thead>
<tr>
<th>No.</th>
<th>NAME</th>
<th>FUNCTION</th>
<th>No.</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RFin</td>
<td>RF Input (WR-10, UG-387/U)</td>
<td>6</td>
<td>NC</td>
<td>No Internal Connection</td>
</tr>
<tr>
<td>2</td>
<td>RFout</td>
<td>RF Output (WR-10, UG-387/U)</td>
<td>7</td>
<td>GND</td>
<td>Ground (0.0 V)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground (0.0 V)</td>
<td>8</td>
<td>NC</td>
<td>No Internal Connection</td>
</tr>
<tr>
<td>4</td>
<td>Vgain</td>
<td>Gain Control (-3.0 - 0.0 V)</td>
<td>9</td>
<td>Vd</td>
<td>Power Supply (1.5 V)</td>
</tr>
<tr>
<td>5</td>
<td>Vd</td>
<td>Power Supply (1.5 V)</td>
<td>10</td>
<td>Vgain</td>
<td>Gain Control (-3.0 - 0.0 V)</td>
</tr>
</tbody>
</table>

Note

Normally, the pins should be grounded.

Connection Diagram

[Diagram showing connections and heat sinks]
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vd</td>
<td>Power Supply Voltage</td>
<td>-0.1 to +2.0</td>
<td>V</td>
</tr>
<tr>
<td>Vgain</td>
<td>Gain Control Voltage</td>
<td>-4.0 to +0.1</td>
<td>V</td>
</tr>
<tr>
<td>Pin</td>
<td>RF Input Power</td>
<td>10</td>
<td>dBm</td>
</tr>
<tr>
<td>Tc</td>
<td>Case Temperature under Bias</td>
<td>TBD</td>
<td>°C</td>
</tr>
<tr>
<td>Tstor</td>
<td>Storage Temperature</td>
<td>TBD</td>
<td>°C</td>
</tr>
</tbody>
</table>

TBD: To Be Determined

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vd</td>
<td>Power Supply Voltage</td>
<td>TBD</td>
<td>1.5</td>
<td>TBD</td>
<td>V</td>
</tr>
<tr>
<td>Vgain</td>
<td>Gain Control Voltage</td>
<td>-3.0</td>
<td>0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Pin</td>
<td>RF Input Power</td>
<td></td>
<td>5</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Tc</td>
<td>Case Temperature under Bias</td>
<td>TBD</td>
<td>45</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

TBD: To Be Determined

DC Characteristics

(Vd = 1.5V, Vgain = 0.0V, GND = 0.0 V, Tc (1) = 40 °C)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>Power Supply Current</td>
<td>2.3</td>
<td>TBD</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

TBD: To Be Determined

Note

Tc: Temperature at package base.
AC Characteristics

\(V_d = 1.5 \text{ V}, \ V_{\text{gain}} = 0.0 \text{ V}, \ GND = 0.0 \text{ V}, \ f = 78 \text{ GHz} – 100 \text{ GHz}, \ T_c^{(1)} = 40 \text{ ºC}\)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gs</td>
<td>Linear Gain</td>
<td>TBD</td>
<td>20</td>
<td>TBD</td>
<td>dB</td>
</tr>
<tr>
<td>Pout</td>
<td>Output Power at 5 dBm Input</td>
<td>TBD</td>
<td>17</td>
<td>TBD</td>
<td>dBm</td>
</tr>
<tr>
<td>P(-1dB)</td>
<td>Output Power at 1dB Gain Compression</td>
<td>TBD</td>
<td>11</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>S_{11}</td>
<td>Maximum Input Return Loss</td>
<td>-7</td>
<td>TBD</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>S_{22}</td>
<td>Maximum Output Return Loss</td>
<td>-4</td>
<td>TBD</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>S_{12}</td>
<td>Maximum Reverse Isolation</td>
<td>-35</td>
<td>TBD</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gc</td>
<td>Linear Gain Control Range (V_{\text{gain}} = -3.0 – 0.0 \text{ V})</td>
<td>TBD</td>
<td>10</td>
<td>TBD</td>
<td>dB</td>
</tr>
</tbody>
</table>

TBD: To Be Determined

Note

Tc: Temperature at package base.
Sample Small Signal Characteristics (75 GHz – 110 GHz)

Measurement Conditions
Vd = 1.5 V, Vgain = 0.0 V, GND = 0.0 V

Sample Input and Output Characteristics

Measurement Conditions
Vd = 1.5 V, Vgain = 0.0 V, GND = 0.0 V
Sample Output Power vs Frequency (78 GHz - 100 GHz)

Measurement Conditions
Vd = 1.5 V, Vgain = 0.0 V, GND = 0.0 V
Sample Implementation

Note: Each number corresponds to a pin or a waveguide as shown in Connection Diagram.

Power Supply Sequence

(1) Set power supply voltage V_d, V_{gain}, and GND to 0 V.

(2) Apply 1.5 V to V_d.

(3) Apply $-3.0 \text{ V} - 0.0 \text{ V}$ to V_{gain}.

(4) Supply RF Input.

Note.

(1) Use common power supply for both pin 5 and 9.

(2) Use common power supply for both pin 4 and 10.

(3) Use power supplies that do not generate over-voltages such as spikes. Many power supplies generate over-voltages when their outputs are turned on or turned off. To avoid these over-voltages, connect power supplies to V_d and V_{gain} after the power supply outputs are turned on and set to 0 V. Disconnect power supplies from V_s and V_{gain} after the power supply outputs are set to 0 V but before the outputs are turned off.

(4) Connect a power supply to V_d with compliance current of less than 3.0 A.

(5) Use the module in an air velocity of 0.5 m/sec or more and do not remove the heat sinks attached on the module surfaces.
Handling Instructions

Since the IC is fabricated using InP HEMT process, users are recommended to follow the instructions below to prevent damage to the chip from electro-static discharge.

1) Use a conductive working desk connected to the ground (or, a conductive table top connected to the ground).
2) Require all handling personnel to wear a conductive bracelet or wrist-strap connected to the ground through a 1 M-ohm resistor.
3) Ground all test equipment.
4) Ground all soldering iron tops.
5) Store IC's and other devices such as chip capacitors in their conductive carriers until they are soldered.

tolerance: ±0.15
Caution

1. In order to improve products and technology, specifications are subject to change without notice.

2. When using the products, be sure the latest information and specifications are used.

3. Circuit drawings etc. shall be provided for the purpose of information only on application examples not for actual installation of equipment. NTT Electronics Corp. shall not assume any liability for damage that may result from the use of these circuit drawings etc. NTT Electronics Corp. shall not assent to or guarantee any rights of execution for patent rights of the third parties and other rights that may be raised for use of these circuit drawings.

4. To make a design, the products shall be used within the assured ranges with respect to maximum ratings, voltage, and radiation. NTT Electronics Corp. shall not take any responsibility for damage caused by neglecting the assured values or improper usage.

5. Though NTT Electronics Corp. makes every effort to improve quality and reliability, there is a risk that failure or malfunction may occur in semiconductors. It is therefore necessary that the purchasers should take responsibility for making a design that allows the products to operate safely on equipment and systems without any direct threat to the human body and/or property, should such failures or malfunction occur.

6. NTT Electronics Corp.'s semiconductor device products are designed to be used with multimedia networks communication equipment and related measuring equipment. They have not been developed for such equipment that may affect people's lives. Those who intend to use the products for special purposes that may affect human life as a result of failure or malfunction in the equipment using the products or that require extremely high reliability (e.g. life support, aircraft and space rockets, control in nuclear power facilities, submarine relays, control of operations, etc.) shall contact NTT Electronics Corp. before using the products. NTT Electronics Corp. shall not assume any liability for damage that may occur during operation of the products without prior consultation.

7. The product is controlled under the 'Foreign Exchange and Foreign Trade Law'. In the case of exporting this product, it is requested that you take necessary procedures to obtain prior approval from the Minister of Economy, Trade and Industry.

8. The product uses GaAs (gallium arsenide). GaAs powder and vapor are dangerous for humans. Do not break, cut, crush or chemically destroy the products. To dispose of the products, follow the relevant regulations and laws; do not mix with general industrial waste and domestic garbage.

9. Any questions should be directed to the Sales Department of NTT Electronics Corp.

Copyright 2004
NTT Electronics Corp.