COMPUTEX Taipei Forum NGN 2008 Technology Session

Compression technology immerses NGN consumer in HD

Wednesday, June 4 1:00 PM -1:40 PM

Speaker:

Michael Thuresson

Product Planning Manager

NTT Electronics Corporation

Increase Video Communications by Spreading NGN Service

World Transition from Analog to Digital, SDTV to HDTV Broadcasting

Compression needed for Video transmission or recording

- Should be compressed at Video transmission or recording because;
 - Original video data is **1.5Gbit/s**.

Compression needed for Video transmission or recording

- MPEG-2 is the most common compression technology.
- AVC/H.264 compression efficiency is more than double that of MPEG-2.

AVC/H.264 Advanced Technical Features

Features	MPEG-2	AVC/H.264
Intraframe prediction	DCT	•Reduce the quantity of code Block to be coded Block to be code
Variable block Size motion compensation	16x16	 Reduce the quantity of code for motion 16x16 8x16 4x8 8x4 16x8 8x8 4x4
Extension of reference frame selection	Uni-directional prediction Uni-directional prediction Bi-directional prediction from a previous frame and a future frame	•Reduce the quantity of code and improve the accuracy Bi-predictive frame (from two previous frames) Bi-predictive frame frame) Bi-predictive frame (from a previous frame and a future frame)

AVC/H.264 vs MPEG2 Coding Performance Comparison

AVC/H.264 vs MPEG2 Coding Performance Comparison

- AVC/H.264 compression efficiency is more than double that of MPEG-2.
 - But required processing power is 10-100 times that of MPEG-2's.
 - Even with the latest Core 2 Duo processor, real-time AVC/H.264 encoding is difficult.

• At each step, the content needs to be encoded to decrease its huge data volume

1st Creation

Maintaining high-quality video; requirements:

✓ Supporting 4:2:2 Chroma

✓ High Bitrate

1st Creation

2nd Production

Maintaining high-quality video; requirements:

Creator of & At Home ition

Supporting 4:2:2 Chroma

✓ High Bitrate

1st Creation **✓** Supporting Multiple Video Formats

2nd Production 3rd Delivery

From Content Provider to the Home 3rd Delivery

To transmit high-quality video within limited bandwidth; requirements:

✓ Low Bitrate

✓ Variable Bitrates for Statistical Multiplex

Creator of & At Home ition

NTTElectronics

From Content Provider

Home Network & Codec Technology

Audio-Video Computer

Home Network & Codec Technology MPEG-2 to AVC/H.264 Transcoding

- Optimize storage environment with MPEG-2 to AVC/H.264 Transcoding technology
 - Amount of HD content is exploding
 - PVR: Demand for viewing a missed program by a time shift play

Half the bit rate and double the compression ratio

Home Network & Codec Technology Wireless + Low Latency Codec

See a live demo of enjoy gaming by our super low latency codec technology

Compression Technology Immerses More Video Products in HD

NTT Electronics

Creator of Real High Definition

NTT Electronics Video Compression Development

NTT Electronics

Creator of Real High Definition

NTT Electronics Video Compression LSI Line-up for consumer

Low Latency HDTV MPEG-2 Encoder LSI

Matiz

HDTV Transcoder LSI (MPEG-2 to H.264/AVC)

HDTV MPEG-2 Codec LSI

Low Latency HDTV MPEG-2 Encoder LSI

AVC/H.264 Standards LSI (PCI-express Interface)

Creator of Real High Definition

Visit Our Booth at COMPUTEX TAIPEI

NTT Electronics is exhibiting new products and technologies at "COMPUTEX TAIPEI", Booth No. M128.

Come experience a large-screen demo showcasing extremely low latency and Professional-level video quality!!

